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Abstract— Engineering tools are used for a variety of analyses work ranging from bolted joints, air-flow analysis to finite element methods. 
Despite the computing power present today, engineering analyses often take long time to complete on a single machine. The Honeywell 
Engineering tools portfolio consists of applications both old and new but not all of them are adaptable to a parallelized or clustered 
environment. This paper tries to act as guide to engineers in using modern software libraries and clustered hardware to migrate from single 
core applications to multi-core applications. 

Index Terms— parallel computing, engineering tools, multithreading, optimization, concurrency, analyses tools, parallelism.   

——————————      —————————— 

1 INTRODUCTION                                                                     
NGINEERING tools division has a wide portfolio of 
projects which covers numerical analyses, estimations and 
interpolations. Often these applications are desktop based 

and are meant for a single computer. While most problems 
and requirements are satisfied by the current application se-
tup; new updates and scalability to larger problem 
sets/requirements can be tedious for a single core system. Jobs 
that could significantly affect performance include numerical 
corrections and algorithms. On non-numerical side, there 
could be aspects such as user interface complexity, report gen-
erations and database retrieval. 
Parallel computing is a broad field and could cover multipro-
cessor, multicore as well as multi-node setups. While parallel 
computing is proven to improve processing speed and effi-
ciency, it is still limited by Amdahl’s Law. Amdahl’s Law can 
be stated per definition in Rodgers [1] as “The theoretical 
speedup of the entire task increases by increase in improve-
ment of resources of the system regardless of the magnitude of 
its improvement” 
This means that the performance of a parallelized system is 
limited by the amount of code parallelized.  

 
  

 
Where: 
•   is the theoretical speedup of the whole task.  
•   is the speedup in latency of parts that benefit from 

improvement in resources. 
•   is the percentage of execution time which benefits 

from improvement in resources before the improvement. 

2 PARALLEL COMPUTING APPROACHES 
The usage of parallel computing could be governed by the 

following queries: 

• Compute resources – How many and of what 
specifications?  

Compute resources may mean multiple processor core on a 
single chip or multiple processors on a single die or even multiple 
systems on a network. The number gives us a scalability limit and 

the specification helps us to decide how much computationally 
intensive operations could be allocated along the compute units. 

• Memory resources – How many and of what nature? Are 
they shared or independent?  

Memory resources help us identify bottlenecks on access. If 
memory is shared, then we may need a mechanism to avoid race 
conditions from occurring. Independent memory resources allow 
compute units to work on their local memories hence, we achieve 
a higher degree of parallelism.  

• Communication/IO – How do the computers 
communicate with each other?  

Communication and IO could be via a shared memory (multi-
core), a common bus (multi-processor) and via networks (multi-
node). Due to this variation, different standards are used for 
communication such as: OpenMP for multi-threaded setup; 
Message Passing Interface and Remote Procedure Calls for multi-
node setup. 

Apart from that, the type of networks also govern 
performance. A supercomputer may use Infiniband or torus-
interconnect networks for a high throughput - low latency 
architecture. On the other hand, distributed systems may use local 
LANs or Internet for communication. The performance for the 
latter is governed by network speed, cables etc.   

• Control – What strategies control use of resources?  

Concurrency/Multithreading libraries found in many 
programming languages have the facility to handle race conditions 
or contentions. These facilities help avoid deadlocks in resource 
management and impose a certain order in access of resources. 
Based on the need, one may use critical sections or mutex locks to 
govern access of non-parallelizable sections of code or memory. 
In context of distributed computing, this corresponds to 
distributed lock managers. 

The memory and communication elements could be subsumed 
as Resources because there is an overlap of these two categories in 
certain systems. 

 

2.1 Multithreaded Parallelism 
Parallelism at program level deals with usage of standardized 
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libraries or language specific APIs which provide thread level 
control. The main standard adopted across C/C++ and FOR-
TRAN is OpenMP, which is suitable for shared memory or 
distributed shared memory based architecture models. 
OpenMP in programming uses #pragma directives in C to 
specify sections of concurrent control.  
 
Apart from standards, there are platform independent multi-
processing solutions available in various programming lan-
guages such as Thread class and Runnable interface in Java, 
TLP (Task Level Parallelism) in C#, thread classes in C++ etc. 
However, it must be noted that Ruby MRI and Python has 
threading implementations which cannot run in parallel due 
to GIL (Global Interpreter Lock). It could be used for concur-
rent programs though. 
Multithreading is possible in processors with multiple GPU or 
CPU cores. It poses an advantage over simply running 
processes in parallel by reducing load on processors.  
Advantages: 

o Threads don’t need any communication mechanism 
like message passing or mailboxes.  
o They help keep various aspects of a process respon-
sive to the user while performing some task in back-
ground. 
o They run as single process and occupy the memory 
footprint for the same. 
o Most threading libraries follow fork-join model [2] 
which means that all threads post-execution will join 
with the parent process which spawned them, hence 
ensuring no process zombies exist in memory. 

Disadvantages: 
o Multithreading is possible which only architecture 
that has multiple cores. 
o Prone to deadlocks if resources are mismanaged. 
o Can be applied only to tasks which can be decom-

posed into independent sub-tasks. 
o If one of the tasks was finished earlier, that thread 

remains idle. This is counter-productive to what we would 
like to achieve in multithreading. 

2.2 Multi-node Parallelism 
This idea includes separating a gigantic undertaking among a 

wide range of hubs/frameworks. This is from multithreading as we 
have entry to whole arrangements of processors, memory and IO 
to play out a few assignments. At this scale, we need to manage 
disintegration of issues, association between the figure assets, 
performing calculations and combining the results. [3] Multi-hub 
parallelism is shown in supercomputers where there is tight 
coupling between numerous processors and in addition 
appropriated registering; prevalently in setting of Big Data. In 

Multi-hub, we can arrange parallel design into two classes: - 

o Distributed Memory  

o Hybrid Distributed Shared Memory 

 
Distributed Memory  
 
  
 
 
 
                       

Figure 1: Distributed Memory Architecture [3] 

General Characteristics: 
•Like shared memory frameworks, distributed mem-
ory frameworks differ generally yet share a typical 
trademark. Distributed memory frameworks require 
a correspondence system to associate inter process or 
memory. 
• Processors have their own nearby memory. Memo-
ry addresses in one processor don't guide to another 
processor, so there is no understanding of global ad-
dress space over all processors.  
•Because every processor has its own neighborhood 
memory, it works freely. Transforms it makes to its 
nearby memory have no impact on the memory of 
different processors. Subsequently, the idea of cache 
coherency does not have any significant bearing.   
•When a processor needs access to information in 
another processor, it is normally the assignment of the 
software engineer to expressly characterize how and 
when information is conveyed.  
• Synchronization between errands is in like manner 
the developer's duty.  

Advantages: 
• Memory is adaptable with the quantity of proces-
sors. Increment the quantity of processors and the 
span of memory increments proportionately.  
• Each processor can quickly get to its own memory 
without impedance and without the overhead caused 
with attempting to keep up worldwide store coheren-
cy.  
• Cost viability: can utilize item, off the rack proces-
sors and systems administration.  

      Disadvantages: 
• The developer oversees a significant number of the 
points of interest related with information correspon-
dence between processors.  
• It might be hard to outline information structures, 
in view of worldwide memory, to this memory asso-
ciation.  
• Non-uniform memory get to times information 
dwelling on a remote hub takes more time to access 
than hub nearby information. 

 

Hybrid Distributed Shared Memory 
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Figure 1: Distributed Shared Memory Architecture [3] 

General Characteristics: 

• The biggest and speediest PCs on the planet today utilize 
both shared and conveyed memory models.  

• The shared memory part can be a mutual memory 
machine as well as design handling units (GPU).  

• The circulated memory segment is the systems 
administration of numerous common memory/GPU 
machines, which know just about their own memory not 
the memory on another machine. In this manner, 
organize correspondences are required to move 
information starting with one machine then onto the next.  

• Current patterns appear to demonstrate that this kind of 
memory design will proceed to win and increment at the 
high end of processing for a long time to come. 

Advantages and Disadvantages: 

• Whatever is regular to both shared and appropriated 
memory structures?  

• Increased adaptability is an imperative preferred 
standpoint  

• Increased developer multifaceted nature is an imperative 
drawback 

3 PARRALLELIZATION PARADIGM 
Most legacy toolkits are written in C/C++, FORTRAN and 

MATLAB. Many use iterative methods for approximation of 
numerical problems, which could make it tricky to implement 
parallel programming. Certain observations from past projects 
(HAM, CFCAD): 

• Batch processing could be easily parallelized if there is 
no interdependence between data within iterative jobs. 

• Notably, comparative statements such as equals (==), not 
equals (! =), greater than (>) etc., take greater resources 
than simple assignments. One can use atomic statements 
or critical sections to separate out assignments.  

o Atomic statements would work only if they are 
not special type assignments such as structs or 
classes. 

o Critical sections have an overload of their own, 
hence one must leverage the program size with 
critical section usage to attain optimal 
performance. 

      ●     Certain aspects are not parallelizable: 

o GUI tasks 

o I/O tasks 

 

 
Figure 3: A single threaded application can be transformed into a paralle-

lized one, step-wise 

1. Identify resource heavy areas of the system: One can 
approach various stakeholders of the project to discuss features 
which take long time to process in the application. Developers and 
Leads can guide us to areas of code which bring the system to a 
drag. 

2. Segregate areas which are strictly serial or capable of 
concurrency: Note that GUI usually runs on a single thread which 
cannot be sub-divided any further. Similarly, I/O cannot be 
parallelized either. Certain computations are inherently serial in 
nature, for e.g.: Fibonacci series requires previous results for 
computing next. Newton-Raphson method for matrices is 
sequential as well.  

3. Architectural differences: Performances in 64-bit 
architectures are higher than 32bit architectures especially if 64-
bit primitives are being used in the application.  

4. Apply equivalent parallel constructs: Once we’ve 
identified target areas which could be parallelized, we need to start 
enveloping the code areas around parallel constructs. Sometimes, 
this can be done readily using macros; as in case of OpenMP. But 
in others, like MKL or MPI, we may need to re-implement certain 
methods with appropriate data types and functions. In case OO 
languages like Java/C#, we may have to use threading 
frameworks.  

5. Performance measurement: Unless there is a 
performance benefit, parallelization is of no use. We must use 
appropriate benchmarking facilities to check difference in running 
time. Note that most timer functions measure CPU cycle time, 
which may be misinterpreted as actual running time. To avoid 
this, use time elapsed from the computer’s inner clock time or use 
external measuring device such as a stopwatch (however it may 
not be as precise as inner clock time differences). 

6. Set limits: Per Amdahl’s law, there is a limit to amount 
of parallelization possible. Adaptive code sections which control 
amount of multi-threading based on need will make sure the 
application runs at optimal performance.   

4 PRELIMINARY RESULTS 
In order to understand how parallelism can be beneficial to 

execution of tasks, we tested two different programs on a sin-
gle machine with and without enabling multithreading. The 
first program to be used is matrix multiplication [4], which is 
an easily parallelizable program and is used in many bench-
marks. Matrix multiplication offers the opportunity to com-
pute each cell independently of the other values in matrix, 
which makes it easy to split into sub-tasks. The target machine 
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runs on Intel i5-5300U processor, which has 2 cores and 4 
threads available for multithreading. We have used OpenMP 
2.0 for multithreading the execution. In these graphs, the low-
er the line, the better is the performance exhibited. 

 
In the next test, we tested Floyd-Warshall algorithm for 

single threaded and multithreaded environments. Floyd-
Warshall is also known as ‘All Pairs Shortest Paths’ algorithm. 
It is a network protocol used for finding shortest paths be-
tween any two given nodes, and this is done using transitive 
closure. This nature of transitivity somewhat restricts the 
amount of parallelization further, as there are more dependent 
variables which must be handled to avoid race conditions. 

 
A naïve implementation of this algorithm involves three 

nested loops to get distances via transitive closures. We have 
used the same for judging performance between its single-
threaded and multi-threaded programs. 

 
TABLE 1 

FLOYD-WARSHALL ALGORITHM RESULTS TABULATED FOR SINGLE-
THREADED AND MULTI-THREADED VARIANTS WITH OBSERVED SPEED-

UP 
 

 
Matrix 
Orders 

Multi-
threaded 
program 
time 
(in 
seconds) 

Single-
threaded 
program time 
(in seconds) 

Speed-up 
observed 

100 0.014 0.024 1.714 
200 0.066 0.118 1.204 
300 0.169 0.251 1.485 
400 0.341 0.509 1.492 
500 0.565 1.192 2.109 
1000 4.700 11.169 2.376 
2500 127.947 277.306 2.167 
5000 1190.56 1779.33 1.494 

 
 
A few results covering higher matrix orders (2500 and 5000) 

have been pruned from the graph to fit its scale. In case Floyd-
Warshall implementations, the single-threaded program was 
roughly 1.4 times slower than the multi-threaded program. 
The peak speed-up of 2.1x was achieved at matrix order of 
500.  

Its observed from both cases that: 
• There is a speed-up factor associated with every in-

crement or subsequent matrix orders 
• Increasing size does not necessarily translate to better 

performance, as observed in second experiment, this 
could mean hardware limitations or the amount of 
parallelizability one could induce into the pro-
gram/algorithm  

• In case of matrix multiplication, we get slightly higher 
speedups with increasing matrix orders. But even this 
is expected to break down, as we reach hardware lim-
its. 

5 PERFORMANCE STUDY 
As a part of our study, we applied parallel programming pa-
radigm to two different internal projects used at Honeywell 
MCoE.  

 

5.1 HAM 
HAM (Honeywell Autocode Manager) is a productivity tool 
set and process for end-to-end controls analysis, design cap-
ture, automated requirements-based testing, and embedded 
code generation. The program’s SCV test suite largely uses 
MATLAB code, and so the parallelization constructs within 
MATLAB were used for increasing performance.  
 
We ran the SCV tests on a workstation to better scale our re-
sources for parallel computing. 
 

TABLE 2 
MATLAB PROFILER RESULTS AFTER SCV RUN 

 
 
Function name 

Total 
time 

% time 

runSCVAllModels 4472 s 78.2 
runSCVAllModels_parallel 1243 s 21.8 

 
In this case: 

Time taken without parallelism = 4472 seconds (ap-
prox. ~74 minutes) 
Time taken with parallelism = 1243 seconds (approx. 
~20 minutes) 

Here “runSCVAllModels” is a serial implementation which 
conducts the tests in sequential order, whereas “runSCVAll-
Models_parallel” conducts them in parallel. 
We see a performance improvement of about 54 minutes, 
roughly three times the performance. 
Conclusion 

1. MATLAB Parallel computing framework scales better 
to larger problem sets. 

2. Better hardware leads to better results. 
3. There is a substantial increase in performance of pa-

rallelized version, almost three times. 

5.2 CFCAD 
Cooled Airfoil Design Tool is used for interpolation of HTC 

and temperature points using boundary conditions on blade 
surfaces. The program uses Intel MKL integrated with BLAS 
and LAPACK environments for parallelized matrix opera-
tions. We looked at certain points which could be used for 
parallelization and identified 3D space Octree generation and 
Solver stages as suitable for our purposes. 

 
Octree Generation 
The coordinate information from boundary conditions are 
used to generate Octrees for HTC and temperature respective-
ly. We implemented parallelization by multi-threading the 
overall for-loop which called the code for generation of Octree 
at each node, and encapsulated certain sequential operations 
into critical sections. The end results of our comparison are 
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tabulated below: 
TABLE 3 

CFCAD RESULTS ON GAS AND COOLANT MODELS 
 

 
Code sections 

Time taken 
for gas 
model 

Time taken 
for coolant 
model 

Temperature Octree 96.54 s 2674.49 s 
HTC Octree 0.045 s 1172.84 s 
Temp. Octree (parallel) 92.07 s 2321.96 s 
HTC Octree (parallel) 0.041 s 1092.75 

 
 
It is observed that: 
• Due to movement of certain parts of code into critical 

sections, we have a certain loss of performance.  
• However, we see roughly a 6% increase in perfor-

mance with multithreaded Octree generation.  
• The time taken for Coolant temperature points reduc-

es by 300 seconds which is quite significant.  
• A roughly 80 second reduction in case of Coolant 

temperature points is witnessed.  
• It could be assumed that heavier processing when 

multi-threaded may see a consistent increase, nothing 
more or less than 6%.  

Solver  
In case of Solver code, much of the implementation uses rou-

tines specifically targeted towards Intel multi-core architectures. To 
measure performance benefits, we set certain Environment va-
riables to a certain value to effectively turn off the parallelization 
present in these routines. The result for few segments of the code 
are tabulated as follows: 

TABLE 4 
SOLVER FUNCTIONS PERFORMANCE COMPARISONS 

 
 
Code sections 

Time taken Time taken 
in parallel 

Assemble() 35.28 s 29.74 s 
IterateConduction()  156.50 s 18.89 s 
SparseFunc() 18.361 s 15.254 s 

 
• The most noticeable difference was in IterateConduction’s 

first iteration. There is a performance increase of about 
87.8%.  

• There is a saving of about 15.6% in case of Assemble itera-
tions with parallelization reducing roughly 5 seconds of 
the original duration.   

• Given that the project ran on powerful Intel Xeon proces-
sors equipped with roughly 24GB RAM, the performance 
differences are not very much noticeable in many cases.  

6 WHEN TO USE PARALLELISM 
The fundamental questions a developer needs to consider be-
fore designing parallelized solutions to a problem are: 
 

• Are there no ways to algorithmically increase perfor-
mance of the software? 

Many problems have advanced algorithms to signifi-
cantly reduce time to solve a problem. If algorithms 
exist to solve the problem in nearly linear time (O (1) 
time complexity), there is no need to parallelize the 
solution.  

    • Could the problem size scale substantially over time? 
If the software will deal with larger problem sets over 
time, it must scale accordingly to deal with them. One 
cannot guarantee up-to-date hardware all the time, so 
we might need to use concurrency, e.g. request traffic 
on an e-commerce website. 

   • Is it possible to parallelize the solution? 
Parallelization is bound by the technologies worked 
upon, both in terms of software and hardware. Some 
systems may not have advanced multi-threading ca-
pabilities or the platform we work upon may not have 
support for concurrency. The problem itself may not 
be parallelizable if it cannot be resolved into inde-
pendent sub-problems or if it is IO bound or strictly 
sequential, e.g. Factorials cannot be parallelized as we 
always need the next number’s factorial to compute 
the first. 

    • Is it necessary to use parallel computing?  
Sometimes the problem may not be suitable for con-
currency. Such problems may be too trivial or may 
not require a speedup, if hardware advancements are 
sufficient.  

7 CONCLUSION 
We have tried to cover basic understanding and approach-

es one could utilize in parallel computing and tried to demon-
strate the overall performance benefits and even a few possi-
ble pitfalls one may face. Developments in today’s environ-
ment have led parallel computing to split into many diverse 
and sometimes overlapping fields of study, and is expected 
only to grow in importance in the coming years. Given our 
wide tools portfolio, we may benefit hugely from the re-
sources and tools available today. 

8 FUTURE SCOPE 
• During the past 20+ years, the trends indicated by ev-

er faster networks, distributed systems, and multipro-
cessor computer architectures (even at the desktop 
level) clearly show that parallelism is the future of 
computing. 

• There has been a greater than 500,000x increase in su-
percomputer performance, and it only seems to be 
growing. 

• There have been ideas which intend to fuse Big Data 
with HPC to process extremely large data sets with-
out compromising on fault tolerance nor perfor-
mance. 

• Big Data and Analytics sales are projected to reach 
$187 billion by 2019 from about $122 billion in 2015 
[5]; this would require massive strides in the field of 
parallel computing. 

• We could develop abstractions around IoT concepts 
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to handle parallel processing across diverse range of 
devices. 

• Supercomputing performance has already reached 
Peta-Flops in speed, with the world’s fastest being 93 
Peta-Flops (Sunway TaihuLight) [6]; Exaflop compu-
ting is not far away.   
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