
International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 53
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

A Study on Parallel Computing and its
Approaches

Prashant Chaudhary, Hari Mohan

Abstract— Engineering tools are used for a variety of analyses work ranging from bolted joints, air-flow analysis to finite element methods.
Despite the computing power present today, engineering analyses often take long time to complete on a single machine. The Honeywell
Engineering tools portfolio consists of applications both old and new but not all of them are adaptable to a parallelized or clustered
environment. This paper tries to act as guide to engineers in using modern software libraries and clustered hardware to migrate from single
core applications to multi-core applications.

Index Terms— parallel computing, engineering tools, multithreading, optimization, concurrency, analyses tools, parallelism.

—————————— ——————————

1 INTRODUCTION
NGINEERING tools division has a wide portfolio of
projects which covers numerical analyses, estimations and
interpolations. Often these applications are desktop based

and are meant for a single computer. While most problems
and requirements are satisfied by the current application se-
tup; new updates and scalability to larger problem
sets/requirements can be tedious for a single core system. Jobs
that could significantly affect performance include numerical
corrections and algorithms. On non-numerical side, there
could be aspects such as user interface complexity, report gen-
erations and database retrieval.
Parallel computing is a broad field and could cover multipro-
cessor, multicore as well as multi-node setups. While parallel
computing is proven to improve processing speed and effi-
ciency, it is still limited by Amdahl’s Law. Amdahl’s Law can
be stated per definition in Rodgers [1] as “The theoretical
speedup of the entire task increases by increase in improve-
ment of resources of the system regardless of the magnitude of
its improvement”
This means that the performance of a parallelized system is
limited by the amount of code parallelized.

Where:
• is the theoretical speedup of the whole task.
• is the speedup in latency of parts that benefit from

improvement in resources.
• is the percentage of execution time which benefits

from improvement in resources before the improvement.

2 PARALLEL COMPUTING APPROACHES
The usage of parallel computing could be governed by the

following queries:

• Compute resources – How many and of what
specifications?

Compute resources may mean multiple processor core on a
single chip or multiple processors on a single die or even multiple
systems on a network. The number gives us a scalability limit and

the specification helps us to decide how much computationally
intensive operations could be allocated along the compute units.

• Memory resources – How many and of what nature? Are
they shared or independent?

Memory resources help us identify bottlenecks on access. If
memory is shared, then we may need a mechanism to avoid race
conditions from occurring. Independent memory resources allow
compute units to work on their local memories hence, we achieve
a higher degree of parallelism.

• Communication/IO – How do the computers
communicate with each other?

Communication and IO could be via a shared memory (multi-
core), a common bus (multi-processor) and via networks (multi-
node). Due to this variation, different standards are used for
communication such as: OpenMP for multi-threaded setup;
Message Passing Interface and Remote Procedure Calls for multi-
node setup.

Apart from that, the type of networks also govern
performance. A supercomputer may use Infiniband or torus-
interconnect networks for a high throughput - low latency
architecture. On the other hand, distributed systems may use local
LANs or Internet for communication. The performance for the
latter is governed by network speed, cables etc.

• Control – What strategies control use of resources?

Concurrency/Multithreading libraries found in many
programming languages have the facility to handle race conditions
or contentions. These facilities help avoid deadlocks in resource
management and impose a certain order in access of resources.
Based on the need, one may use critical sections or mutex locks to
govern access of non-parallelizable sections of code or memory.
In context of distributed computing, this corresponds to
distributed lock managers.

The memory and communication elements could be subsumed
as Resources because there is an overlap of these two categories in
certain systems.

2.1 Multithreaded Parallelism
Parallelism at program level deals with usage of standardized

E

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 54
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

libraries or language specific APIs which provide thread level
control. The main standard adopted across C/C++ and FOR-
TRAN is OpenMP, which is suitable for shared memory or
distributed shared memory based architecture models.
OpenMP in programming uses #pragma directives in C to
specify sections of concurrent control.

Apart from standards, there are platform independent multi-
processing solutions available in various programming lan-
guages such as Thread class and Runnable interface in Java,
TLP (Task Level Parallelism) in C#, thread classes in C++ etc.
However, it must be noted that Ruby MRI and Python has
threading implementations which cannot run in parallel due
to GIL (Global Interpreter Lock). It could be used for concur-
rent programs though.
Multithreading is possible in processors with multiple GPU or
CPU cores. It poses an advantage over simply running
processes in parallel by reducing load on processors.
Advantages:

o Threads don’t need any communication mechanism
like message passing or mailboxes.
o They help keep various aspects of a process respon-
sive to the user while performing some task in back-
ground.
o They run as single process and occupy the memory
footprint for the same.
o Most threading libraries follow fork-join model [2]
which means that all threads post-execution will join
with the parent process which spawned them, hence
ensuring no process zombies exist in memory.

Disadvantages:
o Multithreading is possible which only architecture
that has multiple cores.
o Prone to deadlocks if resources are mismanaged.
o Can be applied only to tasks which can be decom-

posed into independent sub-tasks.
o If one of the tasks was finished earlier, that thread

remains idle. This is counter-productive to what we would
like to achieve in multithreading.

2.2 Multi-node Parallelism
This idea includes separating a gigantic undertaking among a

wide range of hubs/frameworks. This is from multithreading as we
have entry to whole arrangements of processors, memory and IO
to play out a few assignments. At this scale, we need to manage
disintegration of issues, association between the figure assets,
performing calculations and combining the results. [3] Multi-hub
parallelism is shown in supercomputers where there is tight
coupling between numerous processors and in addition
appropriated registering; prevalently in setting of Big Data. In

Multi-hub, we can arrange parallel design into two classes: -

o Distributed Memory

o Hybrid Distributed Shared Memory

Distributed Memory

Figure 1: Distributed Memory Architecture [3]

General Characteristics:
•Like shared memory frameworks, distributed mem-
ory frameworks differ generally yet share a typical
trademark. Distributed memory frameworks require
a correspondence system to associate inter process or
memory.
• Processors have their own nearby memory. Memo-
ry addresses in one processor don't guide to another
processor, so there is no understanding of global ad-
dress space over all processors.
•Because every processor has its own neighborhood
memory, it works freely. Transforms it makes to its
nearby memory have no impact on the memory of
different processors. Subsequently, the idea of cache
coherency does not have any significant bearing.
•When a processor needs access to information in
another processor, it is normally the assignment of the
software engineer to expressly characterize how and
when information is conveyed.
• Synchronization between errands is in like manner
the developer's duty.

Advantages:
• Memory is adaptable with the quantity of proces-
sors. Increment the quantity of processors and the
span of memory increments proportionately.
• Each processor can quickly get to its own memory
without impedance and without the overhead caused
with attempting to keep up worldwide store coheren-
cy.
• Cost viability: can utilize item, off the rack proces-
sors and systems administration.

 Disadvantages:
• The developer oversees a significant number of the
points of interest related with information correspon-
dence between processors.
• It might be hard to outline information structures,
in view of worldwide memory, to this memory asso-
ciation.
• Non-uniform memory get to times information
dwelling on a remote hub takes more time to access
than hub nearby information.

Hybrid Distributed Shared Memory

————————————————
• Prashant Chaudhary is currently an Engineer at Honeywell Technology

Solutions Pvt. Ltd at Bangalore, India.
• Hari Mohan is an Engineer at Honeywell Technology Solutions Pvt. Ltd

at Bangalore, India.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 55
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Figure 1: Distributed Shared Memory Architecture [3]

General Characteristics:

• The biggest and speediest PCs on the planet today utilize
both shared and conveyed memory models.

• The shared memory part can be a mutual memory
machine as well as design handling units (GPU).

• The circulated memory segment is the systems
administration of numerous common memory/GPU
machines, which know just about their own memory not
the memory on another machine. In this manner,
organize correspondences are required to move
information starting with one machine then onto the next.

• Current patterns appear to demonstrate that this kind of
memory design will proceed to win and increment at the
high end of processing for a long time to come.

Advantages and Disadvantages:

• Whatever is regular to both shared and appropriated
memory structures?

• Increased adaptability is an imperative preferred
standpoint

• Increased developer multifaceted nature is an imperative
drawback

3 PARRALLELIZATION PARADIGM
Most legacy toolkits are written in C/C++, FORTRAN and

MATLAB. Many use iterative methods for approximation of
numerical problems, which could make it tricky to implement
parallel programming. Certain observations from past projects
(HAM, CFCAD):

• Batch processing could be easily parallelized if there is
no interdependence between data within iterative jobs.

• Notably, comparative statements such as equals (==), not
equals (! =), greater than (>) etc., take greater resources
than simple assignments. One can use atomic statements
or critical sections to separate out assignments.

o Atomic statements would work only if they are
not special type assignments such as structs or
classes.

o Critical sections have an overload of their own,
hence one must leverage the program size with
critical section usage to attain optimal
performance.

 ● Certain aspects are not parallelizable:

o GUI tasks

o I/O tasks

Figure 3: A single threaded application can be transformed into a paralle-

lized one, step-wise

1. Identify resource heavy areas of the system: One can
approach various stakeholders of the project to discuss features
which take long time to process in the application. Developers and
Leads can guide us to areas of code which bring the system to a
drag.

2. Segregate areas which are strictly serial or capable of
concurrency: Note that GUI usually runs on a single thread which
cannot be sub-divided any further. Similarly, I/O cannot be
parallelized either. Certain computations are inherently serial in
nature, for e.g.: Fibonacci series requires previous results for
computing next. Newton-Raphson method for matrices is
sequential as well.

3. Architectural differences: Performances in 64-bit
architectures are higher than 32bit architectures especially if 64-
bit primitives are being used in the application.

4. Apply equivalent parallel constructs: Once we’ve
identified target areas which could be parallelized, we need to start
enveloping the code areas around parallel constructs. Sometimes,
this can be done readily using macros; as in case of OpenMP. But
in others, like MKL or MPI, we may need to re-implement certain
methods with appropriate data types and functions. In case OO
languages like Java/C#, we may have to use threading
frameworks.

5. Performance measurement: Unless there is a
performance benefit, parallelization is of no use. We must use
appropriate benchmarking facilities to check difference in running
time. Note that most timer functions measure CPU cycle time,
which may be misinterpreted as actual running time. To avoid
this, use time elapsed from the computer’s inner clock time or use
external measuring device such as a stopwatch (however it may
not be as precise as inner clock time differences).

6. Set limits: Per Amdahl’s law, there is a limit to amount
of parallelization possible. Adaptive code sections which control
amount of multi-threading based on need will make sure the
application runs at optimal performance.

4 PRELIMINARY RESULTS
In order to understand how parallelism can be beneficial to

execution of tasks, we tested two different programs on a sin-
gle machine with and without enabling multithreading. The
first program to be used is matrix multiplication [4], which is
an easily parallelizable program and is used in many bench-
marks. Matrix multiplication offers the opportunity to com-
pute each cell independently of the other values in matrix,
which makes it easy to split into sub-tasks. The target machine

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 56
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

runs on Intel i5-5300U processor, which has 2 cores and 4
threads available for multithreading. We have used OpenMP
2.0 for multithreading the execution. In these graphs, the low-
er the line, the better is the performance exhibited.

In the next test, we tested Floyd-Warshall algorithm for

single threaded and multithreaded environments. Floyd-
Warshall is also known as ‘All Pairs Shortest Paths’ algorithm.
It is a network protocol used for finding shortest paths be-
tween any two given nodes, and this is done using transitive
closure. This nature of transitivity somewhat restricts the
amount of parallelization further, as there are more dependent
variables which must be handled to avoid race conditions.

A naïve implementation of this algorithm involves three

nested loops to get distances via transitive closures. We have
used the same for judging performance between its single-
threaded and multi-threaded programs.

TABLE 1

FLOYD-WARSHALL ALGORITHM RESULTS TABULATED FOR SINGLE-
THREADED AND MULTI-THREADED VARIANTS WITH OBSERVED SPEED-

UP

Matrix
Orders

Multi-
threaded
program
time
(in
seconds)

Single-
threaded
program time
(in seconds)

Speed-up
observed

100 0.014 0.024 1.714
200 0.066 0.118 1.204
300 0.169 0.251 1.485
400 0.341 0.509 1.492
500 0.565 1.192 2.109
1000 4.700 11.169 2.376
2500 127.947 277.306 2.167
5000 1190.56 1779.33 1.494

A few results covering higher matrix orders (2500 and 5000)

have been pruned from the graph to fit its scale. In case Floyd-
Warshall implementations, the single-threaded program was
roughly 1.4 times slower than the multi-threaded program.
The peak speed-up of 2.1x was achieved at matrix order of
500.

Its observed from both cases that:
• There is a speed-up factor associated with every in-

crement or subsequent matrix orders
• Increasing size does not necessarily translate to better

performance, as observed in second experiment, this
could mean hardware limitations or the amount of
parallelizability one could induce into the pro-
gram/algorithm

• In case of matrix multiplication, we get slightly higher
speedups with increasing matrix orders. But even this
is expected to break down, as we reach hardware lim-
its.

5 PERFORMANCE STUDY
As a part of our study, we applied parallel programming pa-
radigm to two different internal projects used at Honeywell
MCoE.

5.1 HAM
HAM (Honeywell Autocode Manager) is a productivity tool
set and process for end-to-end controls analysis, design cap-
ture, automated requirements-based testing, and embedded
code generation. The program’s SCV test suite largely uses
MATLAB code, and so the parallelization constructs within
MATLAB were used for increasing performance.

We ran the SCV tests on a workstation to better scale our re-
sources for parallel computing.

TABLE 2
MATLAB PROFILER RESULTS AFTER SCV RUN

Function name

Total
time

% time

runSCVAllModels 4472 s 78.2
runSCVAllModels_parallel 1243 s 21.8

In this case:

Time taken without parallelism = 4472 seconds (ap-
prox. ~74 minutes)
Time taken with parallelism = 1243 seconds (approx.
~20 minutes)

Here “runSCVAllModels” is a serial implementation which
conducts the tests in sequential order, whereas “runSCVAll-
Models_parallel” conducts them in parallel.
We see a performance improvement of about 54 minutes,
roughly three times the performance.
Conclusion

1. MATLAB Parallel computing framework scales better
to larger problem sets.

2. Better hardware leads to better results.
3. There is a substantial increase in performance of pa-

rallelized version, almost three times.

5.2 CFCAD
Cooled Airfoil Design Tool is used for interpolation of HTC

and temperature points using boundary conditions on blade
surfaces. The program uses Intel MKL integrated with BLAS
and LAPACK environments for parallelized matrix opera-
tions. We looked at certain points which could be used for
parallelization and identified 3D space Octree generation and
Solver stages as suitable for our purposes.

Octree Generation
The coordinate information from boundary conditions are
used to generate Octrees for HTC and temperature respective-
ly. We implemented parallelization by multi-threading the
overall for-loop which called the code for generation of Octree
at each node, and encapsulated certain sequential operations
into critical sections. The end results of our comparison are

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 57
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

tabulated below:
TABLE 3

CFCAD RESULTS ON GAS AND COOLANT MODELS

Code sections

Time taken
for gas
model

Time taken
for coolant
model

Temperature Octree 96.54 s 2674.49 s
HTC Octree 0.045 s 1172.84 s
Temp. Octree (parallel) 92.07 s 2321.96 s
HTC Octree (parallel) 0.041 s 1092.75

It is observed that:
• Due to movement of certain parts of code into critical

sections, we have a certain loss of performance.
• However, we see roughly a 6% increase in perfor-

mance with multithreaded Octree generation.
• The time taken for Coolant temperature points reduc-

es by 300 seconds which is quite significant.
• A roughly 80 second reduction in case of Coolant

temperature points is witnessed.
• It could be assumed that heavier processing when

multi-threaded may see a consistent increase, nothing
more or less than 6%.

Solver
In case of Solver code, much of the implementation uses rou-

tines specifically targeted towards Intel multi-core architectures. To
measure performance benefits, we set certain Environment va-
riables to a certain value to effectively turn off the parallelization
present in these routines. The result for few segments of the code
are tabulated as follows:

TABLE 4
SOLVER FUNCTIONS PERFORMANCE COMPARISONS

Code sections

Time taken Time taken
in parallel

Assemble() 35.28 s 29.74 s
IterateConduction() 156.50 s 18.89 s
SparseFunc() 18.361 s 15.254 s

• The most noticeable difference was in IterateConduction’s

first iteration. There is a performance increase of about
87.8%.

• There is a saving of about 15.6% in case of Assemble itera-
tions with parallelization reducing roughly 5 seconds of
the original duration.

• Given that the project ran on powerful Intel Xeon proces-
sors equipped with roughly 24GB RAM, the performance
differences are not very much noticeable in many cases.

6 WHEN TO USE PARALLELISM
The fundamental questions a developer needs to consider be-
fore designing parallelized solutions to a problem are:

• Are there no ways to algorithmically increase perfor-
mance of the software?

Many problems have advanced algorithms to signifi-
cantly reduce time to solve a problem. If algorithms
exist to solve the problem in nearly linear time (O (1)
time complexity), there is no need to parallelize the
solution.

 • Could the problem size scale substantially over time?
If the software will deal with larger problem sets over
time, it must scale accordingly to deal with them. One
cannot guarantee up-to-date hardware all the time, so
we might need to use concurrency, e.g. request traffic
on an e-commerce website.

 • Is it possible to parallelize the solution?
Parallelization is bound by the technologies worked
upon, both in terms of software and hardware. Some
systems may not have advanced multi-threading ca-
pabilities or the platform we work upon may not have
support for concurrency. The problem itself may not
be parallelizable if it cannot be resolved into inde-
pendent sub-problems or if it is IO bound or strictly
sequential, e.g. Factorials cannot be parallelized as we
always need the next number’s factorial to compute
the first.

 • Is it necessary to use parallel computing?
Sometimes the problem may not be suitable for con-
currency. Such problems may be too trivial or may
not require a speedup, if hardware advancements are
sufficient.

7 CONCLUSION
We have tried to cover basic understanding and approach-

es one could utilize in parallel computing and tried to demon-
strate the overall performance benefits and even a few possi-
ble pitfalls one may face. Developments in today’s environ-
ment have led parallel computing to split into many diverse
and sometimes overlapping fields of study, and is expected
only to grow in importance in the coming years. Given our
wide tools portfolio, we may benefit hugely from the re-
sources and tools available today.

8 FUTURE SCOPE
• During the past 20+ years, the trends indicated by ev-

er faster networks, distributed systems, and multipro-
cessor computer architectures (even at the desktop
level) clearly show that parallelism is the future of
computing.

• There has been a greater than 500,000x increase in su-
percomputer performance, and it only seems to be
growing.

• There have been ideas which intend to fuse Big Data
with HPC to process extremely large data sets with-
out compromising on fault tolerance nor perfor-
mance.

• Big Data and Analytics sales are projected to reach
$187 billion by 2019 from about $122 billion in 2015
[5]; this would require massive strides in the field of
parallel computing.

• We could develop abstractions around IoT concepts

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 8, Issue 10, October-2017 58
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

to handle parallel processing across diverse range of
devices.

• Supercomputing performance has already reached
Peta-Flops in speed, with the world’s fastest being 93
Peta-Flops (Sunway TaihuLight) [6]; Exaflop compu-
ting is not far away.

ACKNOWLEDGMENT
We would like to thank Venkatarao Ganji for his encourage-
ment to write this article. We would also like to extend our
gratitude to Ravi Kiran from HAM team. It would be unfair to
leave out the many comments and suggestions which came
from reviewers of this article.

REFERENCES
[1] Rodgers, David P. (June 1985). "Improvements in multiprocessor system

design". ACM SIGARCH Computer Architecture News archive. New York,
NY, USA: ACM. 13 (3): 225–231. Doi: 10.1145/327070.327215. ISBN 0-8186-
0634-7. ISSN 0163-5964

[2] Michael McCool; James Reinders; Arch Robison (2013). Structured Parallel
Programming: Patterns for Efficient Computation. Elsevier.

[3] Blaise Barney. Introduction to Parallel Computing. Livermore Computing.
[4] Chowdhury, Rifat. Parallel Computing with OpenMP to solve matrix Multip-

lication. UCONN BIOGRID REU Summer 2010. University of Connecticut.
[5] Davis, Jessica (2016-05-24). “Big Data, Analytics Sales Will Reach $187 Billion

By 2019”. Information Week.
[6] Clark, Jack; King, Ian (2016-06-20). "World's Fastest Supercomputer Now Has

Chinese Chip Technology". Bloomberg.com.
[7] Java Documentation.

https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.ht
ml

[8] Parallel Processing in Java, https://blog.pavelsklenar.com/parallel-
processing-java/

[9] Supercomputer performances over the years, Wikipedia.org.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Parallel Computing Approaches
	2.1 Multithreaded Parallelism
	2.2 Multi-node Parallelism

	3 Parrallelization Paradigm
	4 Preliminary Results
	5 Performance Study
	5.1 HAM
	5.2 CFCAD

	6 When To Use Parallelism
	7 Conclusion
	8 Future Scope
	Acknowledgment
	References

